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Abstract—This paper examines biomass, productivity, and nutrient 
storage capacity of dominant wetland macrophytes and nutrient 
concentrations in water and sediment to understand the relation 
between nutrient availability and their effects on wetland 
productivity. It is concluded that the wetland macrophytes capacity to 
process water nutrient within tissues managed by the biomass and 
seasonal productivity hence regulate the cycling of nutrient without 
stressing the macrophytes communities present, is considerable. Both 
nitrogen and phosphorus sources differ on their speciation, 
concentration, bioavailability and mode and timing of delivery. 
Nitrogen and phosphorus concentration and flux is a vital source for 
biological activity in aquatic systems and needs proper management 
techniques to slow down the impacts associated with urbanization 
and progressive agriculture. 
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1. INTRODUCTION 

Wetlands are categorized as one of the most productive 
ecosystems of the biosphere [1] often denoted as ‘Biological 
hotspots’ providing numerous benefits to humankind, aquatic 
flora, and fauna, habitat for migratory birds and wildlife. 
Wetlands have sieve mechanism working against the polluted 
water entering the wetland causing threat to the biodiversity of 
the ecosystem. Organisms inhabiting the wetland niche 
represent the complex and dynamic relationships in the form 
of ‘food web,' showing significant variance from one wetland 
to another wetland. Trophic dynamics exist by between inflow 
and outflow of energy at each trophic level [2]. In aquatic 
resources, primary producers (macrophytes and algae) are 
responsible for energy flow. The littoral zones, occupied by 
macrophytes represents the most productive biotopes on earth 
[3] and are the source of an organic pool for an ecosystem. In 
deep water bodies the role of aquatic macrophytes is 
conspicuous while in shallow lakes submerged macrophytes 
zone perform a key role in the trophic dynamics. Plants are the 
source of stored energy as tissue biomass, which they 
conserve through the process of photosynthesis. The 
International Biological Programme (IBP) also showed its 
consideration of productivity and human welfare. Aquatic 

macrophytes are the source of organic production for human 
and domestic animal nutrition. Fresh water systems have a 
bicyclic phase of primary production being regulated by 
phytoplankton and macrophytes, but productivity per unit area 
is more for macrophytes than phytoplankton communities [4]. 
Some tropical and subtropical springs, coral reefs and tropical 
coastal waters maintain a constant value for biomass. Leith & 
Whittaker [5] had worked extensively on the primary 
productivity of the biosphere. Like biomass production, 
another important function of plants is to store nutrients in 
their tissues through uptake from water and soil. Many 
researchers have investigated studies involving seasonal 
biomass changes and rate of production by macrophytic 
communities in different aquatic ecosystems.  Some of the 
famous works are Odum [6]; Schalles and Schure [7], 
Lenssen-John et al. [8]; Richordson et al. [9]; Hart & Lovorn 
[10]. The presences of nutrients influence ecosystem 
functioning and plants life as well. Some of the traditional 
research on the nutrients storage in emergent vegetation are 
discussed by Boyd [11]; Barko [12]; and of submerged by 
DeMarte & Hartmann [13]; [14]; Shardendu & Ambasht [14]; 
Nicholas and keeny [15]. Economic importance and indicator 
value of aquatic plants are investigated by Schulz [16]; Rogers 
& Davis [17]. Nutrients inflow from domestic wastes and 
industries enrich the aquatic environment. The nutrient 
assimilative and storage ability of wetlands embedded within 
agricultural landscapes determines their role as nutrient sinks, 
but also as potential nutrient sources within the landscapes 
[18]. Plants can successfully consume these nutrients from 
polluted waters [19] as a valuable source of protein [20] and 
energy production [21]. Species composition influences 
nutrient retention of ecosystems because individual species 
differ in their tissue nutrient quality [22]. In wetlands, human 
activities can have profound effects on plant community 
composition and ultimately ecosystem function. Developing 
an understanding of how species respond to those activities is 
essential to predicting the impacts of human activities on both 
species composition and ecosystem function. Plants need a 
range of mineral nutrients. Nitrogen, phosphorous and 
potassium are the essential minerals required for the healthy 
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wetland species differed considerably  for Ca, Mg, Na and K 
but only slightly for nitrogen and phosphorus.  

3.4. Biomass and productivity 

The emergent zone was constituted by Eleocharis plantaginea, 
Panicum auritum, Cynodon dactylon and Paspalum 
scrobiculatum, Phragmites australis, which shared (30%) of 
total standing crop biomass of wetland. Nymphaea stellata and 
Nelumbo nucifera were the constituent plant species of this 
zone. Here two species were recorded in comparison to five 
species of the emergent zone and their contribution to the total 
annual biomass of the pond was 10%. N. nucifera had 
maximum annual biomass of 1596 g m-2 followed by 1329 g 
m-2 of N. stellata of the total annual standing crop biomass of 
the zone. The total annual biomass of rooted floating zone was 
calculated 2925 g m-2. 

Free-floating zone was dominated by three species i.e. 
Pistia stratiotes, Eichhornia crassipes and Lemna minor. The 
value of standing crop biomass started decreasing and 
minimum was recorded (1.32 ± 0.06 g m-2) in the end of 
summer (Fig 5). Total annual biomass for free-floating zone 
was 11693 g m-2. Winter (37.6%) and rainy (37.9%) season 
was most suitable for the growth of all the three species of this 
zone while summer was least (24.3%) suitable. The total 
annual biomass for submerged zone was (9609 gm-2), out of 
which C. demersum contributed maximum (54.7%) followed 
by Vallisneria spiralis (33%). Biomass contribution of 
Hydrilla verticillata (6.6%), Potamogeton pectinatus (3.6%), 
and Aponogeton natans (1.7%) was very nominal. Seasonal 
contribution of winter was maximum (40.8%) indicates that 
post-monsoonic months favoured rapid growth of 
macrophytes. Although, the three species were present 
throughout the study period, yet the maximum contribution by 
Eichhornia crassipes was 85.4%. 

The contribution of submerged zone to the wetland was 
32.8%. Emergent zone was constituted by five species where 
net primary productivity was highest (336 g m-2) in the rainy 
season followed by summer (17.9 g m-2) season. In winter 
season there was no increase in the biomass. The annual 
productivity for emergent zone was 384 g m-2. 

Annual productivity of rooted floating zone was (418.2 
gm-2) in which yearly contribution of Nelumbo nucifera was 
maximum 57% and Nympheae stellata 43%. Eichhornia 
crassipes, Pistia stratiotes, and Lemna minor have constituted 
free-floating zone of the Kabar wetland. Eichhornia crassipes 
was the dominant member whose rate of productivity was 472 
g m-2 in the rainy season, which was the maximum production 
in the wetland. This was followed by winter season where the 
rate was 29 g m-2 season-1. The maximum seasonal 
productivity (355 g m-2) of submerged zone was in the rainy 
season for Ceratophyllum demersum and minimum production 
was (6.5 g m-2) for A. natans.  Hydrilla verticillata and 
Ceratophyllum demersum showed no net increase in biomass 
value in the summer season. All other species of this zone 

produced in all the three season. H. verticillata had highest 
productivity (78.7 g m-2) in the winter season and lowest 
(42.4 g m-2) in the rainy months. 

Table –3 Biomass (gm-2) comparisons between different aquatic 
ecosystems zones 

Zones Study sites Maximum References 
Biomass 
(gm-2) 

  Ramgarh Lake 3540 Verma, 1979 
  Chilwa Lake 4340 Srivastava, 

1973 
 Emergent 

Zone 
Jalwania Pond 674 Singh, 1973 

  Agro farm Pond 
(Varanasi) 

610 Shrdendu, 
1991 

  Kabar Wetland 615 Present study 
        
  Chilwa Lake 130 Srivastava, 

1973 
  Jalwania Pond 968 Singh, 1973 

Rooted 
floating Zone 

Agrofarm Pond 
(Varanasi) 

236.4 Shrdendu, 
1991 

  Kabar wetland 245.6 Present study 
        
  Ramgarh Lake* 858 Verma, 1979 
  Chilwa Lake 82 Srivastava, 

1973 
  Jalwania Pond 676 Singh, 1973 

Free Floating 
Zone 

New Orleans, 
Missisippi 

1500 Westlake, 
1963 

  Agro farm Pond 
(Varanasi) 

1190 Shrdendu, 
1991 

  Kabar Wetland 1018.4 Present study 
        
  Ramgarh Lake 962 Verma, 1979 
  Chilwa Lake 1800 Srivastava, 

1973 
  Jalwania Pond 1131 Singh, 1973 

Submerged 
Zone 

Florida, USA  621 Sculthorpe, 
1967 

  Computation of 
different work 

500 Westlake, 
1975 

  Agro farm Pond 
(Varanasi) 

71.4 Shrdendu, 
1991 

  Kabar Wetland 588 Present study 
 

Table 4.  Biomass (gm-2) comparison from various aquatic 
communities 

Community Biomass  (gm-
2) 

References 

English reed swamps 800-1154 Sculthorpe (1967) 
Reed swaps in 

Minnesota (USA) 
630-4640 Sculthorpe (1967) 

New Zealand Lake 50-1000 Sculthorpe (1967) 
Temperate Lakes 0.07-680 Sculthorpe (1967) 
Agrofarm Pond 

(Varanasi) 
0.56-1190.7 Shardendu (1991) 

Kabar Wetland 1.25-1018.4 Present Study 
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world, which showed the biomass range from 0.07-680 gm-2 in 
temperate lakes to 630-4640 gm-2 in reed swamps of U.S.A. 
The biomass range of present study varied from (1.25-1018 
gm-2) which has lower value than reed swamps of U.S.A. [35]. 
This may be due to underground parts of the vegetation 
especially emergent one and rooted floating vegetation. This 
may be an ultimate cause of maximum biomass in free-
floating zone. Previous studies have shown that aquatic 
macrophytes contributed between 1.2 and 30% of stream 
primary production [36]. In the emergent zone maximum 
productivity was 336 gm-2. In summer season primary 
production was very low (18 g m-2) whereas there was no 
production in winter season. During rainy season rooted 
emergent species of emergent zone showed rapid growth due 
to availability of moisture, soil nutrient, and light intensity in 
comparison to other seasons. Emergent species are more 
productive than free-floating and submerged plants [33]. The 
rate of seasonal production in attached floating zone ranged 
from 121.9 g m-2 in summer and 115.5 gm-2 in rainy season. 
The higher rate of production in summer was due to maximum 
range of temperature and bright sunlight because in this zone 
water or moisture was not a limiting factor (Fig 5). 

The free- floating zone species had the intermediate 
position between emergent and submerged zone. A maximum 
seasonal productivity was reported (471.7 g m-2) for 
Eichhornia crassipes in rainy season. These macrophytes are 
less productive than the emergent [33]. Higher rate of 
productivity in rainy season was on account of flowering and 
fruiting season of the species. However, data on productivity 
of floating macrophytes are very few. Verma [37] and 
Shardendu (14) reported maximum rate of 15 g m-2 day-1 dry 
matter production for free floating zone.  

The maximum productivity in submerged zone was 663 g 
m-2 in rainy season when optimum temperature and light 
conditions were suitable for the net increase in biomass value. 
In summer rate of productivity was 127.8 g m-2 and in winter 
222.4 g m-2. Westlake [34] has presented the net productivity 
of macrophytes, which ranged between 2-10 g m-2 day-1. 
These ranges of production were concluded on the data of 
Owens and Edwards [38], Ikusima [39] and Westlake et al. 
[4]. Human disturbances to wetlands are frequently the result 
of agricultural practices and urban development [40], and their 
impacts can be divided into individual stressors that may have 
physical, chemical, and/or biological effects on wetlands. 
Many changes are typical of nutrient enrichment, including 
increased biomass production, dominance of faster growing 
plant species, accelerated N cycling and reduced N retention 
[41]. The mean annual nutrient con- centration in all wetland 
species differed considerably  for Ca, Mg, Na and K but only 
slightly for nitrogen and phosphorus [42]. Emergent 
vegetation possesses an extensive network of roots and 
rhizomes, which provides them great potential to store 
phosphorus. They store high below ground biomass in 
comparison to above ground biomass due to their ideal 

anatomical structures for phosphorus storage. Phosphorus 
regeneration in soils and sediments is great in the surface 
layers and decreases with depth. Total phosphorus is usually 
greater in the surface layers and decreases with depth. In 
Eichhornia crassipes nitrogen, phosphorus and potassium 
were more in summer season while sodium was high in winter 
season. Accumulation of sodium in plant tissue was more after 
rainy season. Nitrogen, phosphorus and potassium are 
important component of protoplasm and were needed by 
plants during log phase of growth to synthesize protein. 
Phosphorus uptake was high by macrophytes during peak 
growing season, followed by decrease in winter season. 
Macrophytes are seasonally important nutrient reservoir for 
phosphorus. 

CONCLUSION  

Wetland ecosystem absorbs and recycles essential nutrients, 
purifies contaminated inflows. Many agricultural and 
industrial wastes including detergents, oils, acids, and paper 
are also detoxified and decomposed by the biological 
activities. The physicochemical study of the wetland in Kaber 
wetland during this study revealed their physicochemical 
characteristics of water as being suitable for microbial growth. 
Wetland under study revealed high organic matter content due 
to vigorous growth of macrophytes in every zone of the 
wetland. Wetland was supporting various kinds of 
macrophytes, hence enhancing the productivity of the system. 
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